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Cobalt oxide nanoparticles coated with carbon were prepared by the modified flame pyrolysis method.
The preparation was carried out by simply exposing the cobalt nitrate salt onto a spatula to gas flame,
the flame temperature converted the cobalt nitrate into cobalt oxide, which further get coated by carbon
produced from the combustion of fuel gas. The obtained product from the flame pyrolysis was character-
ized using techniques viz. XRD, FTIR and SEM. SEM data show that the short length rod shaped nanopar-
ticles coated with carbon ranging from 0.3 to 1 lm lm formed during the process. XRD and FTIR data also
support the formation of cobalt oxide nanoparticles coated with carbon particles. Cobalt oxide NPs were
utilized for the catalytic N-formylation reaction of amines at 70–80 �C. The optimization of the catalyst as
well as temperature have been done carefully. The product of the reaction were characterized by various
techniques viz. FTIR, HRMS and 1H NMR which confirmed the formation of the product.
Copyright � 2023 Elsevier Ltd. All rights reserved.
Selection and peer-review under responsibility of the scientific committee of the 2nd International Con-
ference on Multifunctional Materials.
1. Introduction

Metal oxide demonstrates wide range of applications. Cobalt
oxide here is the most stable phase in the Co-O system [1–4].
Cobalt oxide has been reported demonstrating wide range of appli-
cations viz. in lithium-ion batteries, heterogeneous catalysts, gas
sensing, ceramic pigments, electrochemical devices etc. [5–9].
Co3O4 reportedly plays a vital role as selective coating material
for the high-temperature solar collectors [10]. Supercapacitors
are responsible for the advancement of mobile phones, digital cam-
eras and solar cell power storage. Some electrode material which
can be used in the supercapacitors is made up of metal oxides,
metal sulfides etc. Co3O4 nanoparticles as electrode material for
supercapacitors were also reported in the literature [11]. Cobalt
oxide also gained very much attention in supercapacitors applica-
tions in the worldwide researchers, as it has capability to impart
higher power density than normal batteries.

Various methods like sol–gel, surfactant-mediated synthesis,
thermal decomposition, polymer-matrix assisted synthesis and
spray-pyrolysis are well known for the synthesis of Co3O4 nanopar-
ticles [12–14].

Applications of transition metal-oxide nanoparticles especially
cobalt oxide are also well known in the organic reactions. Various
reactions of N-formylation of aliphatic and aromatic amines have
been reported. Reactions were carried out either in the broad range
of solvents or under solvent free condition. Application of cobalt
oxide NPs on growth of various parts of the plants are also reported
in the literature [15–21]. Various biological applications of cobalt
oxide have been found [22–26].

N-Formyl compounds are the main precursors as protecting
groups for amines and an ideal starting material for isocynide com-
pounds. [2–3] These compounds can also act as an intermediate for
mono methylated amines from primary amines [4].

Many reports on the formylation reactions are available such as
chloral,[27] activated formic acid using DCC [28] or EDCI,[29] for-
mic esters [30–33] and ammonium formate [34]. Although these
strategies have their own advantages high yield, mild reaction con-
ditions but they are expensive and may be toxic to use. The green
approach for such reactions has great importance concerning to
the ‘save environment campaign’ run all over the world.

Here, we report a modified flame pyrolysis method to synthesis
cobalt oxide nanomaterial from cobalt nitrate. We used modified
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method developed by Inamdar et al. [35–40]. In short, the cobalt
oxide nanomaterial prepared using cobalt nitrate salt directly
burned in the ordinary gas flame. It’s very simple, facile, easy to
operate and economical method which yielded rod shaped
nanoparticles ranging from 0.3 to 1 lm. The prepared product is
utilized directly as catalyst for the N-formylation reaction. In this
strategy we first optimized the quantity of catalyst required for
the completion of the reaction. The temperature optimization
was also done under the solvent free condition. Overall, we report
here very simple and solvent free approach for the preparation of
N-formyl amines using cobalt oxide nanoparticles (Co3O4) as
catalyst.
2. Experimental

AR grade materials were used for the preparation of cobalt
oxide nanoparticles. A civil gas was used to produce the flame
which is employed for the heating the material to get nanosized
Co-O material. The resulting product was characterized by using
various techniques such as XRD, EDS, FTIR, SEM, UV–Visible etc.
Reactions were monitored by the silica coated alumina TLC plates.
The resulting organic products were isolated and purified by
appropriate chromatographic methods. The characterization of
the N-formylated products have been done using FTIR, 1H NMR,
and mass spectrometry.
2.1. Preparation of cobalt oxide nanoparticles

AR grade 0.50 g (2.7 mM) cobalt nitrate was taken into the spat-
ula and heated over ordinary gas flame for about 15 to 20 min. The
sample first was melted and then transformed in to solid dark
brown colored material and finally converted into black colored
material. The product was collected and weighed. 0.45 g
(2.4 mM) product was obtained. The black powder of the product
was characterized by SEM, XRD, UV, and IR and confirmed the for-
mation of rod-shaped cobalt oxide nanoparticles. The resulting
product showed magnetic property checked by ordinary magnet.
3. Result and discussion

3.1. FTIR of Cobalt-Oxide nanoparticles:

FT-IR spectrum of Co3O4 nanoparticles (Fig. 1) depict prominent
absorption peaks at 655 and 540 cm�1. The CoAO stretching fre-
quency was assigned to 540 cm-1and absorption band at
655 cm�1 was assigned to bridging vibrations of OACoAO bond
[17]. The octahedral site of Co3+–O vibrations were observed at
655 cm�1 band and tetrahedral site Co3+–O of the Co3O4 lattice
were attributed to 540 cm�1[18].
Fig. 1. FT-IR spectrum of cobalt oxide NPs.
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3.2. XRD of Cobalt-Oxide nanoparticles:

XRD pattern of as prepared catalyst is shown in Fig. 2. The for-
mation of Co3O4 nanoparticles from the cobalt nitrate can be seen
in the pattern. The sharp peaks at 2h values are indexed as 220
(31.92�), 311 (37.44�), 511 (59.92�) & 440 (65.76�) to the character-
istic (JCPDS file no. 42–1467) peaks of the Co3O4 [41].

3.3. SEM of Cobalt-Oxide nanoparticles:

SEM image of the prepared catalyst Co3O4 nanoparticles is given
in Fig. 3. The image clearly shows formation of rod like structure.
The length of the rod is observed ranging from 0.3 to 1 lm. the
structure of the prepared catalyst seen uniform throughout in
the form of rods.

3.4. EDS of Cobalt-Oxide nanoparticles

EDS of the prepared catalyst Co3O4 nanoparticles is given in
Fig. 4. The EDS showed major composition of the catalyst as Co,
O and C. traces of Zn are observed may be due to impurities either
from spatula or in the cobalt salt itself.

4. Applications of cobalt oxide nanoparticles in organic
reactions

There are very few reports available on use of cobalt oxide NPs
in the organic reactions. N-formylation of amines have been
achieved using different metal oxide catalysts [19–25]. However,
heterogeneous catalysts have more advantages over homogenous
catalysts due to their recovery at the end of the reaction without
major loss of activity and ease of handling, despite the merit homo-
geneous catalyst it is difficult to recover and reuse.

The scope of N-formylation reaction was demonstrated by the
reaction of diverse amines with formic acid. The use of aromatic
amines having various substituents like nitro, chloro, alkyl, methyl
etc. On aromatic ring resulted into the formation of desired
products.

4.1. Optimization of cobalt oxide NPs in the organic reactions

Optimization of the cobalt oxide NPs was done at various quan-
tities and is tabulated as shown in Table 1. Finally, it’s concluded
that 5 mg catalyst was sufficient to achieve the conversion at set
temperature of 80 �C. The yield of the reaction was found to be
92 % (Table 1: entry 7). These reaction conditions were applied
for further reactions (Fig. 5 and Fig. 6).
Fig. 2. XRD pattern of the catalyst cobalt oxide NPs.



Fig. 3. SEM spectrum of cobalt oxide NPs.

Fig. 4. EDS spectrum of cobalt oxide NPs.

Table 1
Optimization of cobalt oxide NPs in the organic reactions.

Entry Substrate Amount of catalyst
(Co3O4)

Reaction temperature Yield in %

1 m-nitroaniline 100 mg 80 ℃ 85
2 m-nitroaniline 75 mg 80 ℃ 86
3 m-nitroaniline 50 mg 80 ℃ 90
4 m-nitroaniline 25 mg 80 ℃ 91
5 m-nitroaniline 10 mg 80 ℃ 90
6 m-nitroaniline 5 mg 80 ℃ 92

Fig. 5. Solvent free N-formylation of m-nitroaniline using formic acid and Co3O4

NPs.

Fig. 6. Solvent free N-formylation of o-chloroaniline using formic acid and Co3O4

NPs.

S. Kharat, S. Dahiwale, S.N. Inamdar et al. Materials Today: Proceedings 92 (2023) 1034–1039
We have successively achieved solvent free N-formylation of
aromatic amines using formic acid and catalytic amount of
cobalt-oxide nanoparticles. The temperature range of 70–80 �C
was employed for the period of 3–4 h under nitrogen atmosphere.
Before that optimization of catalyst was done at the same reaction
condition. Here formic acid reagent was acting as solvent for the
1036
reaction. This green reaction was monitored by TLC and the result-
ing product was characterized by NMR, mass spectra (HRMS) and
FTIR (Fig. 7).

In second example we use o-chloroanilin precursor for N-
formylation reaction under identical reaction conditions (Fig. 6).
The product in excellent amount was obtained from this reaction
and subsequent purification provide bright pale yellow-colored
crystals. The confirmation of the product o-chloro N-formyl amine
done was using FTIR, 1H NMR and LCMS (refer Fig. 8).
4.2. Experimental procedure

4.2.1. Preparation of N-formyl m-nitroaniline 3
A mixture of 0.5 g (0.0036 mol) of amine, Cobalt oxide NPs in

catalytic amount (0.005 g) and about 3 equiv. of formic acid
(0.5 g, 0.0106 mol) was heated at 80 �C for about 6 hrs. The pro-
gress of reaction was monitored by TLC, and after starting material
was disappeared, the reaction mixture was allowed to cool at room
temperature and ether (20 ml) was added in the reaction flask and
filtered. Finally, after washing with 1 N NaHCO3 and treatment
with sodium sulphate, the solvent gets evaporated and collected
the crude product quantitatively. The reaction product was recrys-
tallized in DCM solvent to get pale yellowish 0.55 g product in
almost 92% yield.

FTIR: 3258 cm�1 (N–H stretch), 1689 cm�1 (-C = O stretch),
1392–1518.62 cm�1(N = O stretch).

1H NMR: d 10.70 (S, 1H, H-CO), d 8.86 (t, 1H, J = 2.0 Hz, Ar-H), d
8.39 (d, 1H, J = 1.2 Hz, N–H), d 7.95 (dd, J = 8 Hz & 2 Hz, Ar-H), d
7.89 (dd, J = 8 Hz & 2 Hz, Ar-H), d 7.61 (dd, J = 8.4 Hz & 8.4 Hz,
Ar-H).
LCMS: M/Z, [M+] 166, 165.
4.2.2. Preparation of N-formyl o-chloroaniline 5:
A 0.5 g (0.0039 mol) of o-chloroaniline was added to the flask

containing cobalt oxide NPs in catalytic amount (0.005 g) and for-
mic acid (0.5 g, 0.0106 mol). The resulting mixture was heated at
80 �C for the period of 6 hrs. After TLC check the reaction mixture
was cooled to room temperature and ether (20 ml) was added to
the reaction flask, filtered and finally washed with 1 N NaHCO3 fol-
lowed by treatment with sodium sulphate. Solvent from the reac-
tion mixture evaporated off and crude product was collected
quantitatively. The obtained product was recrystallized in DCM
solvent to get bright pale yellow product in 0.52 g. The confirma-
tion of the product as follows.

FTIR: 3244 cm�1 (N–H stretch); 2898 cm�1(H-C = O, C–H
stretch); 734.39 cm�1 (C-Cl stretch).

1H NMR: d 9.86 (S, 1H, H-C = O); d 8.85 (d, 1H, J = 0.8 Hz,N–H); d
8.09 (dd, J = 9.2 & 1.2 Hz, Ar-H); d 7.51 (dt, J = 1.2 & 1.2 Hz, Ar-H); d
7.35 (dt, J = 1.2 & 1.2 Hz, Ar-H); d 7.15 (dd, J = 1.6 & 1.6 Hz, Ar-H).

LCMS: M/Z, [M+] 155, 153.99.



Fig. 7. NMR, HRMS and FTIR of m-nitroaniline synthesized using Co3O4 NPs.
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5. Conclusion

In conclusion we can say that cobalt oxide nanoparticles coated
with carbon particles have been prepared by the exposure of cobalt
nitrate to ordinary gas flame in excellent yield. SEM, UV, XRD and
EDS data support the formation of short length ranging from 0.3 to
1 lm rod shaped nanoparticles coated with carbon. Optimization
showed that catalytic amount of catalyst is required to complete
the reaction. Therefore, catalytic amount of cobalt oxide NPs were
employed for the N-formylation of amines. The products of the
1037
reaction were characterized by various techniques viz. FTIR, 1H
NMR, which confirmed the formation of the product in excellent
yield.
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Fig. 8. NMR, HRMS and FTIR of o-chloroaniline synthesized using Co3O4 NPs.
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